
Abstract A micro-mechanical theory of macroscopic

stress-corrosion cracking in a unidirectional glass fibre-

reinforced polymer composite is proposed. It is based

on the premise that under tensile loading, the time-

dependent failure of the composite is controlled by the

initiation and growth of a crack from a pre-existing

inherent surface flaw in a glass fibre. A physical model

is constructed and an equation is derived for the

macroscopic crack growth rate as a function of the

apparent crack tip stress intensity factor for mode I.

Emphasis is placed on the significance of the size of

inherent surface flaw and the existence of matrix crack

bridging in the crack wake. There exists a threshold

value of the stress intensity factor below which matrix

cracking does not occur. For the limiting case, where

the glass fibre is free of inherent surface flaws and

matrix crack bridging is negligible, the relationship

between the macroscopic crack growth rate and the

apparent crack tip stress intensity factor is given by a

simple power law to the power of two.

Introduction

Glass fibre-reinforced polymer composites (GFRP) are

widely used in the construction of pipes and tanks

containing acidic solutions. In most cases, where

stresses are low and the acid is sufficiently dilute, these

applications are successful. However, the literature is

full of examples of stress-corrosion cracking of GFRP,

when the stress and environmental conditions have

been severe.

For example, Hogg and Hull [1], Noble et al. [2] and

Price and Hull [3, 4] observed stress-corrosion cracking

in glass fibres in a GFRP by scanning electron

microscopy(SEM). Post mortem evidence of broken

glass fibres indicated a two-stage fracture process: (1) a

‘‘slow’’ (meaning time-dependent) fracture of a

portion of the glass fibre, whose surface is smooth,

followed by (2) a ‘‘fast’’ fracture. The fine markings on

the smooth portion of fracture surface could be traced

back to an inherent surface flaw in the glass fibre. Once

the glass fibre had completely failed, the crack

extended into the surrounding polymer matrix (Fig. 1).

Interesting material behaviour which is frequently

dynamic, with time-dependent characteristics, origi-

nates usually from a kinetic process, diffusion or the

rate of a chemical reaction, all of which, but not

always, contain an empirical component. In an engi-

neering context, a first attempt at modelling this

behaviour of stress-corrosion cracking in a GFRP

would be to describe concisely a body of crack growth

rate data as a function of the crack tip stress intensity

factor using a fracture mechanics model [3–7]. But a

better model, however, would be one that captures

the essential physics of the engineering problem of

fracture. Having identified the dominant microscopic

processes responsible for stress-corrosion cracking in

this instance, we then model them using the tools of

micro-mechanics and our understanding of the theory

of defects, and of reaction rates. The model would

encapsulate the physics of the fracture processes
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induced by a chemically active environment. It would

illuminate the basic principles that underline the key

elements of the stress-corrosion process. The micro-

mechanical model would establish a physical frame-

work within which empirical descriptions of the

behaviour of some of the intrinsic and extrinsic vari-

ables can be attached. We begin with a simple picture

or representation of the actual thing that a stress-

corrosion crack initiates at a pre-existing inherent

surface flaw in a glass fibre, propagates stably per-

pendicular to the fibre direction with time and finally

leads to unstable fracture of the fibre (Fig. 2).

Micro-mechanical theory of stress-corrosion cracking

In bulk glass, the stable crack growth rate due to stress-

corrosion cracking da/dt is given in the following form

[10]

da

dt
¼ m exp �DQ� aKI

RT

� �
: ð1Þ

In this Arrhenius equation, DQ is the activation energy

of the chemically activated process, KI is the crack tip

stress intensity factor for mode I, R is the gas constant,

T is absolute temperature, and m and a are empirical

constants. It should be noted that the activation energy

DQ can sometimes be predicted from molecular mod-

els, but the value of the pre-exponential m and the

constant a more often than not elude current modelling

methods; they must be inserted empirically.

Sekine et al. [11] carried out a numerical simulation

of the growth of a stress-corrosion crack in a glass fibre

in a GFRP. This work showed that the shape of the

crack front within the glass fibre can be approximated

as a circular arc of radius r equal to the fibre radius rf

(Fig. 3). The average crack growth rate due to stress-

corrosion of a glass fibre can be written from Eq. 1 as

1

2rfh
dY

dt
¼ m exp �DQ� aKI

RT

� �
ð2Þ

where Y is the area of the stress-corrosion crack in the

glass fibre, h is half the angle which is made by two

fibre radii on the edges of the stress-corrosion crack,

see Fig. 3, and t is time. In Eq. 2, KI should be inter-

preted as the average value of the crack tip stress

intensity factor along the crack front. Since the crack

tip stress intensity factor is constant more or less over a

large part of central portion of the circular crack front

[11], we will represent KI by the crack tip stress

intensity factor at the maximum depth of the stress-

corrosion crack [12]:

KI ¼ rfFðhÞ
ffiffiffiffiffiffiffiffiffi
2prf

p
ð3Þ

where rf is the tensile stress acting on the glass fibre

and F(h) is written as

FðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos h
p

f1:12� 3:40ð1� cos hÞ
þ 13:87ð1� cos hÞ2 � 14:37ð1� cos hÞ3g:

ð4Þ

Consider the relationship between the tensile stress

acting on a glass fibre ahead of the macroscopic stress-

corrosion crack tip and the apparent crack tip stress

intensity factor for mode I. When the glass fibres in a

unidirectional GFRP are assumed to be distributed in

doubly periodic array shown in Fig. 4, the distance D

Fig. 1 Scanning electron micrograph of fracture surfaces of glass
fibre

Pre-existing
inherent surface flaw Stress-corrosion crack Unstable fracture
Pre-existing
inherent surface flaw Stress-corrosion crack Unstable fracture

Fig. 2 Sekine–Miyanaga–
Beaumont model [8, 9] of
stress-corrosion crack growth
in a glass fibre in a
unidirectional GFRP
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between the neighbouring rows of glass fibre is given

by

D ¼ c

ffiffiffiffiffi
p
Vf

r
rf ð5Þ

where

c ¼

1 for square array of fibre
1ffiffi
2
p ¼ 0:707 for face-centred square array

of fibreffiffiffiffiffiffi
31=2

2

q
¼ 0:931 for face-centred hexagonal

array of fibre

8>>>><
>>>>:

ð6Þ

and Vf is the volume fraction of glass fibre. Now, let us

obtain the average tensile stress over the distance D

just ahead of the macroscopic stress-corrosion crack

tip. Since the unidirectional GFRP is macroscopically

orthotropic, the macroscopic tensile stress in the fibre

direction ry is characterized at the macroscopic crack

tip by [13]

ry ¼
K�Iffiffiffiffiffiffiffiffi
2px
p ð7Þ

where KI
* is the apparent crack tip stress intensity

factor for mode I and x is the rectangular coordinate

axis whose origin is located at the macroscopic crack

tip, see Fig. 4. Then, the average tensile stress over the

distance D just ahead of the macroscopic stress-cor-

rosion crack tip is given by

~ry ¼
1

D

Z D

0

K�Iffiffiffiffiffiffiffiffi
2px
p dx ¼ K�I

ffiffiffiffiffiffiffi
2

pD

r
: ð8Þ

On the other hand, since the tensile stress ahead of

the macroscopic stress-corrosion crack tip is supported

by the glass fibre and matrix, the average tensile stress

~ry is approximately estimated by

~ry ¼ Vf þ
ð1� VfÞEm

Ef

� �
rf ð9Þ

where Ef and Em denote the Young’s moduli of glass

fibre and matrix, respectively.

In view of Eqs. 8 and 9, the relationship between

the tensile stress acting on the glass fibre ahead of the

macroscopic stress-corrosion crack tip rf and the

apparent crack tip stress intensity factor KI
* is given by

rf ¼ bK�I ð10Þ

where

b ¼ Ef

VfEf þ ð1� VfÞEm

ffiffiffiffiffiffiffi
2

pD

r
: ð11Þ

When tougher and more ductile polymer is used as a

matrix, matrix crack bridging shown schematically in

Fig. 5 may occur in the wake of the propagating mac-

roscopic stress-corrosion crack in the unidirectional

GFRP. Such mechanism reduces the apparent crack tip

stress intensity factor KI
*. Then, we obtain

Stress-corrosion crack

r

oY

2θ
fr

Stress-corrosion crack

r

oYY

2θ2θ
fr

Fig. 3 Shape of stress-corrosion crack in a glass fibre
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Fig. 4 Glass fibres distributed in doubly periodic array and
macroscopic tensile stress distribution ahead of the macroscopic
stress-corrosion crack tip
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K�I ¼ K�Ia þK�Ib ð12Þ

where KIa
* and KIb

* are the apparent crack tip stress

intensity factors due to an applied load and matrix

crack bridging, respectively.

In this section, the tensile characteristic of bridging

polymer, i.e. fibrils of polymer, is assumed to be ideally

represented by a cohesive force model with a constant

cohesive stress r = rc for 0 5 d 5 dc where d is the

opening displacement of bridging polymer and dc is its

critical value, as shown in Fig. 6.

When the size of matrix crack bridging is of lc in

width, the apparent crack tip stress intensity factor due

to the matrix crack bridging is given for a plane

problem of rectilinearly anisotropic elasticity [13] by

K�Ib ¼ �4 1� Vfð Þrc

ffiffiffiffiffiffi
lc
2p

r
: ð13Þ

If the matrix crack bridging is restricted to be of small

size ahead of the macroscopic stress-corrosion crack

tip, the relationship between the critical value of the

opening displacement of bridging polymer dc and the

width of matrix crack bridging lc is written as

dc ¼ 4UK�I

ffiffiffiffiffiffi
lc

2p

r
ð14Þ

where

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22f2 b11b22ð Þ1=2þ2b12 þ b66g

q
: ð15Þ

In Eq. 15, b11;b12; b22 and b66 are constants which

relate to the macroscopic elastic constants of the uni-

directional GFRP, and are expressed as follows: in a

plane stress condition,

b11 ¼
1

ET
; b12 ¼ �

mLT

EL
; b22 ¼

1

EL
; b66 ¼

1

GLT

ð16Þ

and in a plane strain condition,

b11 ¼
1� m2

TT

ET
; b12 ¼ �

mLT 1þ mTTð Þ
EL

;

b22 ¼
1� ETm2

LT=EL

EL
; b66 ¼

1

GLT

ð17Þ

where EL and ET are the Young’s moduli in the

longitudinal and transverse directions, respectively, mLT

and mTT are the Poisson’s ratios for transverse strain

under applied loads in the longitudinal and transverse

directions, respectively, and GLT is the shear modulus.

Substituting Eq. 13 into Eq. 12 and eliminating lc by

use of Eq. 14, we obtain

K�I ¼
K�Ia þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�Ia

2 � 4 1� Vfð Þrcdc=U
q

2
ð18Þ

where

K�Ia=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vfð Þrcdc=U

p
: ð19Þ

Meanwhile, geometrical consideration of the area of

the stress-corrosion crack as shown in Fig. 3 gives the

formula [9]:

dY

dt
¼ 4rf

2 sin2 h
dh
dt
: ð20Þ

Substituting Eq. 20 into Eq. 2 and using Eqs. 3 and 10,

we obtain

dt ¼ 2rf

mk

sin2 h
h

exp � abFðhÞ
ffiffiffiffiffiffiffiffiffi
2prf

p

RT
K�I

� �
dh ð21Þ

where

k ¼ exp �DQ

RT

� �
: ð22Þ

By integrating Eq. 21, the time required to propagate

the stress-corrosion crack stably in the single glass

fibre, tF, is given by

Glass fibre

cl

a* Matrix crack bridging

Fig. 5 Matrix crack bridging in the wake of the propagating
macroscopic stress-corrosion crack. The direct observation of the
matrix crack bridging in a GFRP has not been reported yet
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Fig. 6 Cohesive force model of bridging polymer
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tF ¼
2rf

mk

Z hF

h0

sin2 h
h

exp � abFðhÞ
ffiffiffiffiffiffiffiffiffi
2prf

p

RT
K�I

� �
dh ð23Þ

where h0 is half the angle made by two fibre radii on

the edges of the inherent surface flaw and hF is that of

the stress-corrosion crack at the onset of unstable

fracture of the glass fibre. The unstable fracture of the

glass fibre takes place when the crack tip stress inten-

sity factor KI attains the fracture toughness of glass KIc.

By combining Eqs. 3 and 10, hF is therefore given by

hF ¼ F�1 KIc

bK�I
ffiffiffiffiffiffiffiffiffi
2prf

p
 !

ð24Þ

where F)1 is the inverse function of F given by Eq. 4.

The time required to the unstable fracture of the

glass fibre is much shorter than the time tF given by

Eq. 23. Thus, the macroscopic crack growth rate da*/dt

is approximately given by

da�

dt
¼ D

tF
: ð25Þ

By introducing the following quantities [9]:

f ¼ mkD

2rf
; l ¼ ab

ffiffiffiffiffiffiffiffiffi
2prf

p

RT
ð26Þ

Substitution of Eq. 23 into Eq. 25 gives

da�

dt
¼ f

I
ð27Þ

where

I ¼
Z hF

h0

sin2 h
h

expf�lK�I FðhÞg dh: ð28Þ

Consider the integrand in the integral of Eq. 28. By

taking account of the values of a = 0.110 ~ 0.216 m5/2/

mol [10], Ef = 68 ~ 87 GPa, Em = 2.9 ~ 4.8 GPa,

Vf = 0.40 ~ 0.57, R = 8.31 J/(mol K) and T = 298 K at

room temperature, the value of l is estimated as

l ¼ 96:6 � 295ðMPa m1=2Þ�1: ð29Þ

With regard to the apparent crack tip stress intensity

factor KI
*, its range has been set between 2 and

26 MPa m1/2 in the previous experiments. Therefore,

the integrand tends to zero, except for very small value

of h. By taking account of this fact, Eq. 28 is given

approximately by the formula [9]:

I � 4

1:58lK�I

1

1:58lK�I
þ h0

2

� �
expð�0:79lh0K�I Þ: ð30Þ

Table 1 shows the approximate values calculated from

Eq. 30 together with the exact values of I for a uni-

directional GFRP with face-centred hexagonal array

of fibre. The values of the Young’s moduli of glass

fibre and matrix, Ef, Em, and the volume fraction

of glass fibre Vf are taken, for instance, as Ef =

72.5 GPa, Em = 4.0 GPa and Vf = 0.5, respectively.

The apparent crack tip stress intensity factor KI
* is

fixed as 5 MPa m1/2. For the fracture toughness of

glass KIc, we use 0.73 MPa m1/2 which corresponds to

fracture energy cc = 3.7 J/m2 for SiO2 glass [14]. Then,

the angle hF calculated from Eq. 24 is 4.29�
(7.49 · 10)2 rad). It is recognised from Table 1 that

the approximate value agrees to the exact value of I

with satisfactory accuracy for h0 5 2.5� (4.36 ·
10)2 rad). Bartenev [15] pointed out that the depth of

the pre-existing inherent surface flaw generated

during the drawing of a commercial glass fibre of

10 lm diameter is less than 0.01 lm. For this depth,

the angle h0 can be roughly estimated at less than

2.5�.

Substituting Eq. 30 into Eq. 27, we obtain the mac-

roscopic crack growth rate da*/dt in the unidirectional

GFRP as follows:

Table 1 Values of I

h0 l = 150 (MPa m1/2))1 l = 250 (MPa m1/2))1

Approximate Exact Error (%) Approximate Exact Error (%)

0.2� 1.1048 · 10)6 1.0958 · 10)6 0.8 1.4520 · 10)7 1.4356 · 10)7 1.1
0.4� 2.3381 · 10)7 2.3091 · 10)7 1.3 8.2069 · 10)9 8.0521 · 10)9 1.9
0.6� 4.1456 · 10)8 4.0783 · 10)8 1.7 3.7541 · 10)10 3.6580 · 10)10 2.6
0.8� 6.7450 · 10)9 6.6146 · 10)9 2.0 1.5586 · 10)11 1.5102 · 10)11 3.2
1.0� 1.0428 · 10)9 1.0205 · 10)9 2.2 6.1195 · 10)13 5.9056 · 10)13 3.6
1.5� 8.6259 · 10)12 8.4477 · 10)12 2.1 1.6302 · 10)16 1.5730 · 10)16 3.6
2.0� 6.4355 · 10)14 6.3813 · 10)14 0.8 3.8954 · 10)20 3.8306 · 10)20 1.7
2.5� 4.5282 · 10)16 4.6162 · 10)16 )1.9 8.7588 · 10)24 9.0002 · 10)24 )2.7
3.0� 3.0681 · 10)18 3.2768 · 10)18 )6.4 1.8942 · 10)27 2.0979 · 10)27 )9.7
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da�

dt
¼ 1:25fl2K�I

2 1

2þ 1:58lh0K�I

� �
expð0:79lh0K�I Þ:

ð31Þ

By recalling Eq. 18, Eq. 31 yields the relationship be-

tween the macroscopic crack growth rate da*/dt and

the apparent crack tip stress intensity factor due to an

applied load K�Ia. It is worthwhile noting from Eq. 31

that the macroscopic crack growth rate is independent

of the radius and the fracture toughness of glass fibre.

In a plane strain condition, the relationship is shown

in a logarithmic plot for various values of h0 and dc in

Fig. 7. The values of f and l are set, for instance, as

f = 5 · 10)15 m/s and l = 115 (MPa m1/2))1. The

cohesive stress of bridging polymer is taken as

rc = 80 MPa. The values of macroscopic elastic con-

stants of a unidirectional GFRP and volume fraction of

glass fibre are tabulated in Table 2. As can be seen

from the figure, the macroscopic crack growth rate da*/

dt increases with the apparent crack tip stress intensity

factor KIa
* . Moreover, the larger the size of inherent

surface flaw of glass fibre, the higher the macroscopic

crack growth rate. The figure also reveals that the

macroscopic crack growth rate is even lower with

decreasing the apparent crack tip stress intensity factor

due to an applied load because the effect of matrix

crack bridging is more pronounced at a low value of

K�Ia.

It can be also seen in Fig. 7 that there exists the

lowest limit of the apparent crack tip stress intensity

factor K�Ia for the macroscopic stress-corrosion crack to

propagate, unless dc = 0. The lowest limit is marked by

an arrow in Fig. 7. The lowest limit shifts to a higher

value of the apparent crack tip stress intensity factor

K�Ia as the critical value of the opening displacement of

bridging polymer becomes larger. Friedrich [5] and

Aveston and Sillwood [6] observed some evidence of a

stress-corrosion limit by the experiment. Although the

physical implication of the lowest limit is that breakage

of bridging polymer does not take place at the mac-

roscopic stress-corrosion crack tip below the limit, the

lowest limit should be understood as the threshold

stress intensity factor for stress-corrosion cracking

K�Iscc, which is given through Eq. 19 with the equality

by

K�Iscc ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vfð Þrcdc=U

p
: ð32Þ

Discussion

There is experimental data in the literature [6] on a

unidirectional GFRP containing E-glass fibres of

Vf = 0.50 in an orthophthalic polyester resin matrix.

Stress-corrosion crack propagation tests were carried

out in 1 N sulphuric acid at room temperature under a

static load. Figure 8 shows a logarithmic plot of the

data of macroscopic crack growth rate against the

apparent crack tip stress intensity factor due to an
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Fig. 7 Macroscopic crack growth rate versus apparent crack tip
stress intensity factor due to an applied load

Table 2 Values of macroscopic elastic constants of a
unidirectional GFRP and volume fraction of glass fibre

EL = 44.1 GPa, ET = 9.65 GPa
mLT = 0.28, mTT = 0.23
GLT = 4.13 GPa
Vf = 0.55
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Fig. 8 Comparison between experimental and theoretical results
of macroscopic crack growth rate

J Mater Sci (2006) 41:4604–4610 4609

123



applied load K�Ia. Comparison between experiment

and theory can be made by calculating da*/dt for the

values of f = 8.5 · 10)14 m/s, l = 118 (MPa m1/2))1,

h0 = 0.076�, rcdc = 1.85 kPa m and F = 8.60 · 10)2

(GPa))1. The theoretical result of macroscopic crack

growth rate is shown by the solid line in Fig. 8, and is in

good agreement with experimental measurement. This

gives confidence in the physical model.

In the case where h0 = 0� and dc = 0, referring to

Eqs. 18 and 31 the relationship between the macro-

scopic crack growth rate da*/dt and the apparent crack

tip stress intensity factor due to an applied load K�Ia

reduces simply to

da�

dt
¼ 0:625fl2K�Ia

2: ð33Þ

This formula demonstrates that the variation of da*/dt

with K�Ia obeys the simple power law to the power of

two.

As can be seen from Fig. 7, if the apparent crack tip

stress intensity factor is experimentally set over a small

range, log(da*/dt) is observed to be essentially linear

with log K�Ia. This means that the relationship between

da*/dt and K�Ia is represented by a simple power law of

the form:

da�

dt
¼ AK�Ia

m ð34Þ

where m and A are constants. Figure 7 also shows that

the power of two is the smallest power over a small

range of K�Ia.

Table 3 gives the values of power for a unidirec-

tional GFRP, which are obtained experimentally in the

previous studies. We can see that all values of power

are larger than two. As a consequence, the experi-

mental results of the previous studies are consistent

with the result that the smallest power is two.

Conclusions

A physically based micro-mechanical theory of mac-

roscopic stress-corrosion cracking in a unidirectional

GFRP has been presented. The effect of matrix crack

bridging on the macroscopic crack growth rate has

been included in the theory. We have derived an

equation which represents the relationship between the

macroscopic crack growth rate and the apparent crack

tip stress intensity factor due to an applied load. The

relationship has been depicted in the figure. We have

found from the figure that the macroscopic crack

growth rate becomes lower by reducing the size of

inherent surface flaw of glass fibre and by the matrix

crack bridging in the crack wake. Moreover, there ex-

ists the lowest limit of the apparent crack tip stress

intensity factor in the presence of the matrix crack

bridging. This threshold stress intensity factor shifts to

a higher value of the apparent crack tip stress intensity

factor as the critical value of the opening displacement

of bridging polymer becomes larger. For the limiting

case, where the glass fibre is free of inherent surface

flaws and the matrix crack bridging is negligible, the

relationship is represented by a simple power law to

the power of two.
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